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Abstract

The transient behavior of the optical susceptibility of polydiacetylene

induced by an ultrafast pump field is investigated. Within a two-level model

which includes phonon effects phenomenologically, an analytical expression for

the nonlinear susceptibility is obtained. In addition to spectral hole

burning, the novel phenomenon of optical nutation is found. Both this

nutation and the shape of the hole depend sensitively on the detuning between

the exciton frequency and the sum of the pump field and the phonon mode

frequencies. The electronic state and phonon-mediated optical Stark blue

shift are also found in this model. The results are in qualitative agreement

with experiments and indicate that the steady-state approximation is reliable

only when the pulse of the pump field is longer than several exciton

lifetimes.
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I. Introduction

Coherent transient interactions between materials and optical fields are

one of the most interesting subjects in physics. Investigations of transient

optical effects have become very important in the development of coherent

optical spectroscopy and fast response nonlinear optical materials. Such

studies cover such a wide spectrum of subjects and materials as photon echo,
1-5

free induction decay and optical nutation in gaseous materials, ultrafast

dynamical blue shift of the exciton resonance accompanied by strong bleaching
6-9

in quantum wells in heterostructure semiconductors, nonlinear optical

response of excitonsI 0 ,11 and large susceptibilities 1 2 ,1 3 in polymers, optical

nutation in direct-gap bulk semiconductors, 14 ,1 5 and so forth.

A nonlinear optical material can be defined as one whose optical

properties change when light shines upon it. In recent years, the study of

coherent nonlinear optical processes produced by the excitation of

semiconductors in the transparent region well below the absorption edge6 -9 has

been extended to polymers. I0 ,11 When the frequency of the laser beam falling

on semiconductors is tuned below the exciton resonance, it is known that

virtual excitons are generated. These excitons interact with photons in

exactly the same way as real excitons. 7 9 - 11 Such excitonic effects can be

9

explored more naturally by probing the susceptibility and looking for

transient changes that persist as long as the excitation I've imaginary part

of the susceptibility is usually examined via the absorptic , iectrum, and its

real part is explored by measuring the index of refraction, provided that the

sample is strongly excited well below the conduction band edge.

It is well known that polymers exhibit large nonlinear optical

susceptibilities. In comparison with other materials, polymers have the added

advantage of having extremely fast ground-state recovery times, which is why



they attract much attention for their potential applications in future

generations of signal processing devices. Polydiacetylene (PDA) may be a good

candidate for such considerations because of its large x ( 3 ) and small

16
transmission loss c which can be reduced to as low as a < 1 db/cm. Thus the

material possesses a fairly large ratio X (3)/a, which is usually the measure

of the usefulness of a material employed in switching devices. Besides, PDA

17
is easier to use in the construction of waveguides. In spite of the

considerable amount of research carried out so far, however, the mechanism

that governs its nonlinear optical response is still not well understood,

although tremendous progress has made it ripe for further examination.

In this paper, we study the transient behavior of the induced optical

susceptibility of polymers due to irradiation by an ultrashort pulse of a pump

laser field. We take, as an example, polydiacetylene-toluene sulfanate (PTS)

which is irradiated by a strong pump laser and a weak probing laser. The two

lasers may have pulse duration of femtoseconds to picoseconds. For the PTS

system we adopt the two-level model 4 ,6 ,1 5 to describe its ground-state and

virtual exciton state. The lifetime of the exciton and the mediating effects

of the phonon are introduced phenomenologically. We use the perturbation

technique to find the differential nonlinear susceptibility by solving

analytically to all orders in the pump field and to first order in the test

field.

II. Two-level model

The two electronic states of PTS are denoted by 1+> and i->. We assume

a dipole transition and define the dipole operators

s - -x+l (la)



s- +  (lb)

with the inversion operator given by

s z  - 1 (I+><+l -1 -I) (1c)

For a single virtual exciton and a single phonon mode, we can write the free

Hamiltonian as

H ° = cxW S z + W.bb. , (2a)
0 X 111

where bt (b.) creates (annihilates) a phonon in mode i with frequency wi and

is the exciton frequency. For the interaction Hamiltonian we consider

that each virtual exciton interacts with both a strong pump field of amplitude

E and frequency w and a weak test field of amplitude E and frequency wp p tt

Since the test field is very weak, we assume the mediating effects of the

phonons on the dipole transition to be induced only by the pump field, as

shown in Fig. 1. Therefore, we can write the interaction Hamiltonian in both

the rotating-wave approximation and the interacticn representation as

iA
H pit b!S" + h.c. (2b)H I - 2Ae (

for the interaction between the pump field and the PTS, and

i t

HE- - r Ee tS + h.c. (2c)
t 2 t
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for the interaction between the test field and the PTS, where A - o + W . -

Sx , At - t  - Wxs is the dipole matrix element, and A is a coupling constant

proportional to the transition dipole moment u. Here we have neglected Lhe

momentum dependence of virtual excitonsI I1 1 5 and the damping effect of the

phonons. This Hamiltonian uses dipole or projection operators to describe the

dipole transition between the ground state and the excitonic state of the

material by external fields. It is different from that of Ref. 11, where

creation and annihilation operators were used for virtual excitons.

For simplicity, we assume that each phonon mode has only two states, 1>

and 10>, and that the two and higher-phoncn eff.ects are negligible. The

initial condition we consider here is that the system electronically is in its

ground state with no virtual exciton present, while the phonon mode is in its

excited state Ii>. We define Ci±(t) as the probability amplitude of the state

J±> when there is the i-th phonon mode only, of which the time derivative Ci±

is composed of three parts: pump field-induced part C±, test field-induced

part C and damping part i. . By using the Schr6dinger equation and the

interaction Hamiltonians (2), we obtain14,15

-iA t•.pt t)-i* Pi't
(* p te C.i . , (3a)

ia t

CP't(t) in e Pit (3b)
P- t ci+

where in deriving the equation for C+ we have neglected the phonon effects and

have defined 0 - AE /2)( and 0 - MEt/2Y . Then we may write the damping partp p p 14,15 as
phenomenologically 14 1 as



ad Ct) - -yCi (4a)
i+ i+

ad (t) =0 (4b)i-

where y is the damping rate describing the short lifetime of the virtual

exciton. Therefore, from - Ci + Ci + C we have the following

equations for C

-iA t -~
*Pi itt

C (t) - iQ* e C + iQ* e C. -YC (5a)I+ p t I- i+

iA t

i- (t) - iMp e Ci+ + i t e Ci+ (5b)

Since the test field is in most cases much weaker than the pump field,

we can safely apply perturbtaion theory to solve (5). The zeroth-order

equations are obtained by setting Et - 0 in (5), namely,

-i t
oPi 0? 0

- io* e p. c? (6a)
+ p +- i+

iA

- e Pit (6b)i- p i+

In what follows, we assume for simplicity u - p*, A - A* and Qt - 0*
pt pt

With the initial conditions C 0(0) - 0 and Ci (0) - i, we find the solutions

in~
C0 - D sinO.t exp[-(iA + 7)t/2] (7a)
i+ a. i. Pi3.



y - iA (iA -y)t/2

C? - (cosot + P sinO.t) e 1 (7b)

where we have defined the complex Rabi frequency

i - [(A + i7 )2 + 40 (8)

The real part of the Rabi frequency is given by

2 2
OR [(Wx + y + x)/8] , (9a)

which determines the oscillation frequency, and the imaginary part by

2 b
- -[(Jx + y x)/8 , (9b)

which determines the envelope of the oscillation. In (9) we have defined

x - A 2 + 40 2 _ and y - 2Apiy, with A < 0.
P p piP

The solutions up to first-order perturbation can be obtained by

inserting the zeroth-order solutions (7) into the right-hand side of (5). The

results are

Ci±(t) - C.+(t) + 6C.(t) + Ai+ (10)

exp[iA t -
1 (iA + -Y)t]

6C i _ -
2 2

[i(iA + ) iA t2 + 02

2 Pi t i
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1 + t) sin.t + 0icosi t ]  (Ila)
2 Pi t

exp[-iA t + 1(iA 7)t]

SC in t P 2 pi -
6Cp.

i+ 20. [i (iA )1 2 + 0 2

t  Pi i

X {[(A + i-Y)2 + 202 + iAt(iA -y)] sinfl.t
PiP P i  1

- 20i [i(A t - A P) + -Y] cosi t). (lilb)

The integration constants Ai± in (10) are determined by the initial

conditions.

The expectation value of the dipole moment of a virtual exciton is

-ic t -iw t
Ai(t) - u<S (t)> e x - ACtC. e

i -+

0* -ix t
- -(C. + 6C*_ + A* )(C + + 6Ci+ + A. ) e . (12)

1- 1- 1. i+ i- 3+

It is evident that the dipole moment induced by the test beam is given by

-iw t
6pi(t) - M(Ci_*6Ci+ + C6C* )e x (13)

Therefore, the nonlinear optical susceptibility experienced by the test beam

is simply
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-iw tt
x'. - niS6si(t)/(Ete )

2 Y Ii7
- n ll___ [cos0t + i sinaf2t]i 2( 20 201 s

i I

x [((A + i7 ) 2 + 202 A (A + iy)) sin.t
Pi P t 1

20 i(i(A t - A ) + y) cosfl.t]

Q2

D sinfO.t[(1(iA - -) iA sino~t + cost (14)ziZ i 2 Pi t i i i '(4

where

Z [21(iA - 2iAt2  (15a)1 2 Pi i

z [ (iA - ) +At] 2 2 (15b)
2 2 Pi +

We have introduced in (14) the optically-induced transient virtual

exciton density ni which is taken to be proportional to the probability of

18
virtual exciton state,

0 0 0 Isnt 2
n- n C C * - n s  Isinftj exp(-yt) (16)i + iJoil 2
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where we have assumed that all the virtual excitons are induced by the pump

field E since those induced by the weaker probe field are much less likely,
p

and n is the saturation density of the virtual excitons. In this paper we
5

19

only consider the two phonon modes coupling most strongly to the exciton, so

that we have the nonlinear susceptibility

2

- Xi (17)

i-l

The transient behavior of the nonlinear optical susceptibility Xt is

calculated ntmerically as a function of time and the frequencies W and W .p t

The results are presented and discussed in the next section.

III. Results and discussion

In our numerical study, we have used the unit - 1. Other parameters

are chosen as 10,11,20 W - 0.184 eV, w - 0.258 eV, 7 - 0.02 eV, 1 1IA 2 ns
1_ -42e

40i eV, f2 - 5 x 10 eV and w - 1.978 eV. The real and imaginary parts of
p x

Xt are computed separately. Figure 2 shows snapshots at different instants of

time of the variation of Xt with the pump detuning. The variation with time

for fixed detuning is shown in Fig. 3. Figure 4 shows snapshots at different

instants of time of the imaginary part of Xt when the resonance condition is

satisfied, i.e., x - w + w2 "

It is clearly seen from Fig. 2 that both the differential absorption and

refraction are direct effects of the virtudl excitons induced by the pump

field. The mediating role played by the ;honon is substantial when the

duration of the pump pulse is long enough (see the two peaks of the imaginary

part, where x - w )+ w). This is in agreement with the experimental results
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of Ref. 11. However, when the duration of the pump pulse is short, e.g., less

than the lifetime of the virtual exciton, the peak structure of the imaginary

part is not clear, i.e., we cannot see evident optical phonon-mediated

effects. It should be noted at this point that the present results are

different from those reported in Ref. 21 in which steady-state

susceptibilities are calculated in the three-level two-field model without

phonon effects.

Optical nutation can be observed in polymers in the ultrashort time

regime when virtual excitons are generated by a pump field tuned below the

exciton resonance. This situation can be seen from Fig. 3. However, when the

sum of the pump field frequency and one of the phonon frequencies is on

resonance with the exciton frequency, the Rabi oscillation amplitude becomes

smaller. This reflects the fact that the optical phonon plays a crucial role

in the optical nutation of PTS. It is also clearly shown that sometimes the

oscillation centers of ImXt change with time. This is quite different from

nutation phenomena predicted in Refs. 14 and 15 for semiconductors where the

oscillation amplitude decreases monotonically like damped oscillators.

From Fig. 4, we can see the transient behavior of the spectral hole

burning, which also needs sufficient long duration of the pump pulse to have

an effect. The hole is close to the exciton resonance, and there is a deeper

hole when w - w + w .. This indicates that there is energy transfer from thex p :i

pump field to the test field via optical phonons and virtual excitons, also in

qualitative agreement with experiments.
1 0'1 1

Since it takes time for the pump field to build up enough virtual

excitons and since the virtual excitons are short-lived, their effects are

appreciable and stable mos. -2 the time during the pulse (on the order of

picoseconds). The respon -' .me can be anywhere between 20 - 200 femtoseconds
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according to our calculation. Both the absorption and refraction parts show

up almost right away and taper off rather slowly after reaching their peaks.

So, for longer excitation time of the pump field, say, several times of the

exciton lifetime, the steady-state method may be reliable.

In addition, we have also found that increasing the intensity of the

pump field leads to a deeper and wider hole in the absorption spectrum, which

is qualitatively in agreement with the steady-state results of Ref. 11. What

seems to be more interesting is that we find a blue shift of 0.005 eV in our

calculation. This represents joint effects of both the phonon-induced optical

Stark shift and the electronic state optical Stark shift. Such effects have

20.
been observed in a recent experiment in which the differential transmission

of polydiacetylene-toluene sulfanate has been measured by means of coherent

inverse Raman spectroscopy. It is demonstrated in Ref. 20 that this ac Stark

effect is important in the determination of the nonlinear optical response of

PTS even in the small signal limit. The effect is reproduced theoretically in

Ref. 20 by including an extra term to modify the exciton resonance frequency

11
in the simple model of Schmitt-Rink et al. However, we need not do so, and

the treatment in both Refs. 11 and 20 assumes a steady-state solution while

the experimental conditions are more transient-like.
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Figure captions

1. Two-level model representing the excitonic state I+> and ground state 1->.

The virtual excitons are induced by a strong pump field with frequency W
p

Each transitions is mediated by a single phonon of frequency wi, such that

w + w. - w on resonance.
p I x

2. Snapshots of the real (curve 1) and imaginary (c rye 2) parts of the

nonlinear susceptibility versus pump detuning at various times for W =

W (a) t - 25 (eV) "  (b) t - 100 (eV) , (c) t - 500 (eV) , (d) t -

-I
3500 (eV)

3. Real (curve 1) and imaginary (curve 2) parts of x t versus time for wt =

W : (a) w - 1.6 eV; (b) w - 1.72 eV.

4. Snapshots of the imaginary part of the susceptibility versus probe

frequency when w - 1.72 eV: (a) t - 25 (eV) (b) t - 500 (eV) (c) t
P

-i
- 3500 (eV)
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